当前位置: 首页 > 恒指期货

为什么要进行量化投资选股?

时间:2024-09-25浏览:741

一、为什么要进行量化投资选股?

量化策略来自于历史经验,它通过对数据精确的计算来发现并利用投资市场历史上所展现出来的规律性,并假设这种规律在未来继续有效。

我们为什么要进行量化投资?它有什么相对优势?

1、从对历史的认识来看,基本面分析看似全面却并不见得准确。人的大脑已开发的功能有限,难以正确处理纷繁复杂的海量信息。某些信息被主观放大,另外一些信息则会被忽略,这很容易导致人们的认知出现偏差甚至是错误,这将对未来的投资产生误导。而计算机对于输入的全部信息都会平等地加以考察.对 每个因素所发挥的历史作用都能进行精确的测量,也就是说,它在有限的信息范围内能做到准确全面的处理。当然,准确全面的程度有赖于使用计算机的人的能力, 但从方法论的角度来说,它无疑是最精确的。

2、从投资决策方面来说,基本面派难以做到足够的客观,主观感性的影响无处不在。即使经历相似的投资者在面对同样的信息时也会得出不同的判断, 同一个人在不同环境中也可能作出完全迥异的操作,显然人为主观因素(包括喜好、心情、性格等)都产生了非常重要的影响。当然这并不是要否定主观感性,而是想说明人为主观很可能会使得投资者放弃理性的思考,扭曲对客观事实的理解。而冷冰冰的计算机程序足以克服人性的弱点,它能够非常忠实地执行模型开发者所完成的理性的研究成果,而不受其他因素的干扰。同样的信息输入,它得出的结论是唯一的、明确的,并且足够客观、足够理性。

3、量化投资可以大大减轻人脑的负荷,帮助人们进行更高效的投资。计算机程序可以同时处理大量的信息。例如数量选股模型可以在输入千万个数据后 快速批量地输出股票组合,而人脑如果要选出同样的组合恐怕需要好几个月的辛勤劳作,却并不见得能取得更好的成绩。另外计算机还能不知疲倦地工作,这会显著提高投资者把握机会的几率。

因此,开展量化方面的投资和研究是非常有必要的,它将对传统投资起到非常好的补充和提升作用。我们不可因为长期资本管理公司的破产就产生恐俱心理,而致因噎废食。量化模型是很优秀的投资工具,结果好坏的关健在于开发者和使用者如何运用,而不应归咎于量化手段本身。参考云掌财经!

二、量化投资有哪些优势?

量化投资就是借助现代统计学、数学的方法,从海量历史数据中寻找能够带来超额收益的多种“大概率”策略,并纪律严明地按照这些策略所构建的数量化模型来指导投资,力求取得稳定的、可持续的、高于平均的超额回报。量化投资属主动投资范畴,本质是定性投资的数量化实践,理论基础均为市场的非有效性或弱有效性。

量化投资特点:

第一,投资视角更广。借助计算机高效、准确地处理海量信息,在全市场寻找更广泛的投资机会。

第二,投资纪律性更强。严格执行数量化投资模型所给出的投资建议,克服人性的弱点。

第三,对历史数据依赖性强。

量化投资策略有如下五大方面的优势,最大的优势就是风险管理更加精准,能够提供超额的收益,主要包括纪律性、系统性、及时性、准确性、分散化等。

(1)纪律性:严格执行量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差,行为金融理论在这方面有许多论述。

(2)系统性:量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。

(3)及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。

(4)准确性:准确客观评价交易机会,克服主观情绪偏差,妥善运用套利的思想。量化投资正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。与定性投资经理不同,量化投资经理大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。

(5)分散化:在控制风险的条件下,充当准确实现分散化投资目标的工具。分散化也可以说量化投资是靠概率取胜。这表现为两个方面,一是量化投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用,这些历史规律都是有较大概率获胜的策略。二是依靠筛选出股票组合来取胜,而不是一个或几个股票取胜,从投资组合理念来看也是捕获大概率获胜的股票,而不是押宝到单个股票上。

三、量化交易策略有哪些?

一、交易策略

一个完整的交易策略一般包括交易标的的选择,进出场时机的选择,仓位和资金管理等几个方面。

按照人的主观决断和计算机算法执行在策略各方面的决策中的参与程度的不同,可以将交易策略分为主观策略和量化策略。

二、主观策略

主观策略主要依靠投资者的主观判断。

期货市场的投资者通过对产业上中下游、供需、宏观经济预期等的调查做出自己的判断。

类似的,股票市场的主观投资者通过深入研究行业的各个方面,调查行业内的上市公司,形成交易决策。

另外,无论是股票市场还是期货市场,大量的主观投资者是依赖技术分析做出决策的。

三、量化策略

量化策略主要依赖于计算机算法进行交易。

投资者将初步的交易逻辑输入计算机,并运用大量的历史数据做统计和回测,在此基础上做出适当的修改、扬弃,以形成可接受的交易策略。策略在形成后,往往各个决策条件就已经确定,实盘中按照既定的程序执行。

对比而言,部分主观策略在对单个标的的研究深度上有优势,可以通过深度研究提供专家级的意见。而量化策略由于运用计算机决策,可以处理大量的数据,因此在广度上有优势。另外,量化策略在执行中不会受人的状态、情绪等不确定性的影响,因而执行更为严格和精确。

四、常见策略

常见的量化交易策略可以大致分为趋势策略和市场中性策略,趋势策略常见的有双均线策略、布林带策略、海归交易法和多因子选股策略等。

常见的市场中性策略包括统计套利策略、Alpha对冲策略等,著名的网格交易法更多的是一种交易方法,可以用在不同类型的策略中。

下面我们对这几个常见策略做一个简单介绍,想深入了解某个策略的读者可以借助互联网获得更多资料。

(1) 双均线策略

双均线策略在趋势交易中有广泛的应用。该策略根据长短两根不同周期的移动平均线的金叉和死叉来交易。在短周期均线上穿长周期均线(金叉)时做多,在短周期均线下穿长周期均线(死叉)时做空。双均线系统可以进一步扩充为多均线系统。

(2) 布林带策略

布林带由三条线构成,其中的中线是一根移动平均线,上线是由中线加上n倍(如2倍)标准差构成,下线是中线减n倍标准差。当行情上穿上线时做多,下穿下线时做空。

(3) 海归交易法

海归交易法由商品投机家理查德·丹尼斯的推广而闻名。该法则涵盖交易的进出场,资金和仓位管理的各各方面,是一套完整的交易系统。关于该策略的具体交易模式几个字不容易说清楚,详细的了解大家可以参考《海归交易法则》这本书,特别是后面的附录。

(4) 多因子选股

多因子选股模型是股票交易中常见的策略。建立过程包括选取候选因子,在历史数据检验的基础上挑选有效因子并剔除冗余因子等几个过程,最后是根据因子选择要交易的股票,确定出入场时机。

(5) 统计套利

统计套利可以用于期货市场的跨品种和跨期套利,也可以用于相关性高的股票之间的价差套利。它是利用相关性高的标的之间的价差或者价比回归的性质,在价差或价比偏离均衡位置时进场,在价差或价比回到均衡位置时出场。

(6) Alpha对冲策略

Alpha对冲策略同时持有方向相反的两种头寸对冲Beta风险。在国内市场常见的是持有股票多头的同时,持有股指期货空头,该策略是否能够获得超额收益依赖于选取的股票是否具有高的Alpha正值。

(7) 网格交易法

网格交易法的核心是网格间距和中轴线的确定。我们以螺纹钢期货合约为例说明,目前螺纹价格3000,我们建立初始仓位,比如50%仓位。随后螺纹钢每涨50点卖出10%,每跌50点买入10%。这里的3000就是中轴,50点是网格宽度。该策略的收益波动很大

01、海龟交易策略

海龟交易策略是一套非常完整的趋势跟随型的自动化交易策略。这个复杂的策略在入场条件、仓位控制、资金管理、止损止盈等各个环节,都进行了详细的设计,这基本上可以作为复杂交易策略设计和开发的模板。

02、阿尔法策略

阿尔法的概念来自于二十世纪中叶,经过学者的统计,当时约75%的股票型基金经理构建的投资组合无法跑赢根据市值大小构建的简单组合或是指数,属于传统的基本面分析策略。

在期指市场上做空,在股票市场上构建拟合300指数的成份股,赚取其中的价差,这种被动型的套利就是贝塔套利。

03、多因子选股

多因子模型是量化选股中最重要的一类模型,基本思想是找到某些和收益率最相关的指标,并根据该指标,构建一个股票组合,期望该组合在未来的一段时间跑赢或跑输指数。如果跑赢,则可以做多该组合,同时做空期指,赚取正向阿尔法收益;如果是跑输,则可以组多期指,融券做空该组合,赚取反向阿尔法收益。多因子模型的关键是找到因子与收益率之间的关联性。

04、双均线策略

双均线策略,通过建立m天移动平均线,n天移动平均线,则两条均线必有交点。若m>n,n天平均线“上穿越”m天均线则为买入点,反之为卖出点。该策略基于不同天数均线的交叉点,抓住股票的强势和弱势时刻,进行交易。

双均线策略中,如果两根均线的周期接近,比如5日线,10日线,这种非常容易缠绕,不停的产生买点卖点,会有大量的无效交易,交易费用很高。如果两根均线的周期差距较大,比如5日线,60日线,这种交易周期很长,趋势性已经不明显了,趋势转变以后很长时间才会出现买卖点。也就是说可能会造成很大的亏损。所以两个参数选择的很重要,趋势性越强的品种,均线策略越有效

05、行业轮动

行业轮动是利用市场趋势获利的一种主动交易策略其本质是利用不同投资品种强势时间的错位对行业品种进行切换以达到投资收益最大化的目的。

06、跨品种套利

跨品种套利指的是利用两种不同的、但相关联的指数期货产品之间的价差进行交易。这两种指数之间具有相互替代性或受同一供求因素制约。跨品种套利的交易形式是同时买进和卖出相同交割月份但不同种类的股指期货合约。主要有相关商品间套利和原料与成品之间套利。

跨品种套利的主要作用一是帮助扭曲的市场价格回复到正常水平;二是增强市场的流动性。

07、指数增强

增强型指数投资由于不同基金管理人描述其指数增强型产品的投资目的不尽相同,增强型指数投资并无统一模式,唯一共同点在于他们都希望能够提供高于标的指数回报水平的投资业绩。为使指数化投资名副其实,基金经理试图尽可能保持标的指数的各种特征。

08、网格交易

网格交易是利用市场震荡行情获利的一种主动交易策略,其本质是利用投资标的在一段震荡行情中价格在网格区间内的反复运动以进行加仓减仓的操作以达到投资收益最大化的目的。通俗点讲就是根据建立不同数量.不同大小的网格,在突破网格的时候建仓,回归网格的时候减仓,力求能够捕捉到价格的震荡变化趋势,达到盈利的目的。

09、跨期套利

跨期套利是套利交易中最普遍的一种,是股指期货的跨期套利(Calendar Spread Arbitrage)即为在同一交易所进行同一指数、但不同交割月份的套利活动。

10、高频交易策略

高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。

【弗雷德•杰姆】量化交易与资金管理(高清)  PDF电子书.PDF    免费下载

链接:  

提取码: 7rav    量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

均值回归策略:利用股价波动的周期性特征,通过统计分析来确定股价的上涨和下跌趋势,以此进行交易。

动量策略:根据股票价格的涨跌情况,结合技术分析指标,选择价格走势强劲的个股进行交易。

趋势跟踪策略:跟踪市场的趋势,根据趋势的变化来进行交易,以实现收益最大化。

统计套利策略:通过分析不同股票之间的相关性,利用价格差异进行交易,以获得套利收益。

事件驱动策略:通过分析企业的财务数据、业绩公告、重大事件等信息,预测股价的涨跌趋势,以实现高收益的交易。

交易信号策略:根据不同的交易信号来进行交易,例如技术分析指标、基本面分析指标等。

量化风险控制策略:通过建立风险模型,对投资组合进行优化,以降低投资风险。量化交易策略可以配合水母量化使用

友情链接